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Abstract—In this paper we consider the problem of universal
prediction of individual continuous sequences with square-error
loss, using a deterministic finite-state machine (FSM). The goal
is to attain universally the performance of the best constant
predictor tuned to the sequence, which predicts the empirical
mean and incurs the empirical variance as the loss. The paper
analyzes the tradeoff between the number of states of the
universal FSM and the excess loss (regret). We first present
the Exponential Decaying Memory (EDM) machine, used in the
past for predicting binary sequences, and show bounds on its
performance. Then we look explicitly for the optimal machine
with a small number of states. We consider a class of machines
denoted the Degenerated Tracking Memory (DTM) machines that
outperform the EDM machine for a small number of states.
Unfortunately, the regret of the DTM machines is bounded away
from zero even with a large number of states making these
machines suboptimal. Finally, we prove a lower bound on the
achievable regret of any FSM that defines the best rate that the
regret can vanish. We propose a new machine, the Enhanced
Exponential Decaying Memory, which attains the bound and
outperforms the EDM for any number of states.

Index Terms—Universal prediction, individual continuous se-
quences, finite-memory, least-squares.

I. INTRODUCTION

Consider a continuous-valued individual sequence
x1, x2, . . . , xt, . . ., where each sample is assumed to be
bounded in the interval [a, b] but otherwise arbitrary with
no underlying statistics. At each time t, after observing xt1,
a predictor guesses the next outcome x̂t+1, and incurs a
square error prediction loss (xt+1 − x̂t+1)2. Suppose one
can tune a (non-universal) predictor to the sequence, from
a given class of predictors. For example, the best constant
predictor for a given sequence, i.e. a predictor that uses a
constant prediction for all the sequence outcomes, is the
empirical mean x̄ = 1

n

∑n
t=1 xt. The square error loss

incurred by this predictor is the sequence’s empirical variance
1
n

∑n
t=1(xt − x̄)2. Thus, for a given sequence xn1 , the excess

loss of a universal predictor U (that predicts x̂u,1, ..., x̂u,n)
over the best constant predictor is termed the regret of the
sequence w.r.t U :

R(U, xn1 ) =
1

n

n∑
t=1

(xt − x̂u,t)2 − 1

n

n∑
t=1

(xt − x̄)2. (1)
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In the individual setting, we analyze the performance of a
universal predictor by the maximal excess loss, that is, the
incurred regret of the worst sequence. An extensive survey
on universal prediction is given in [1]. Some aspects of
the universal prediction problem for individual continuous
sequences with square error loss were already explored by
Merhav and Feder in [2]. That work actually considered a more
general case and showed that, e.g., the Recursive Least Squares
(RLS) algorithm [3], [4] generates a universal predictor that
attains the performance of the best (non-universal) L-order
linear predictor [5] tuned to the sequence. When specialized
to the “zero-order” case, i.e. the case where the non-universal
predictor is the constant empirical mean predictor, the resulting
universal predictor is the Cumulative Moving Average (CMA):

x̂t+1 = (1− 1

t+ 1
)x̂t +

1

t+ 1
xt, (2)

where x̂t is the prediction at time t. The regret of this predictor
tends to zero with the sequence length n.

Note that while the reference non-universal constant pre-
dictor needs a single state, the universal predictor (2) requires
an ever growing amount of memory. What happens if the
universal predictor is also constrained to be a finite k-state
machine? Universal estimation and prediction problems where
the estimator/predictor is a k-state machine have been explored
extensively in the past years. Cover [6] studied hypothesis
testing problem where the tester has a finite memory. Hellman
[7] studied the problem of estimating the mean of a Gaussian
(or more generally stochastic) sequence using a finite state ma-
chine. This problem is closely related to our problem and may
be considered as a stochastic version of it: if one assumes that
the data is Gaussian than predicting it with a minimal mean
square error essentially boils to estimating its mean. More
recently, the finite-memory universal prediction problem for
individual binary sequences with various loss functions was
explored thoroughly in [8]–[13]. The finite-memory universal
portfolio selection problem (that dealt with continuous-valued
sequences but considered a very unique loss function) was
also explored recently [14]. Yet, the basic problem of finite-
memory universal prediction of continuous-valued, individual
sequences with square error loss was left unexplored so far.
This paper provides a solution for this problem, presenting
such universal predictors attaining a vanishing regret when
a large memory is allowed, but also maintaining an optimal
tradeoff between the regret and the number of states used by
the universal predictor.

The outline of the paper is as follows. In section II we
formulate the discussed problem and present guidelines that
will be used throughout this paper. In section III we propose a
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possible universal machine - the Exponential Decaying Mem-
ory (EDM) machine - and prove asymptotic lower and upper
bounds on its worst regret. Section IV is devoted to universal
prediction with a small number of states. We present the
class of the Degenerated Tracking Memory (DTM) machines,
an algorithm for designing the optimal DTM machine and a
lower bound on the achievable regret. Sections V and VI are
devoted to universal prediction using a large number of states.
In section V we present an asymptotic lower bound on the
achievable regret of any deterministic k-states machine and in
section VI we present a new machine named the Enhanced
Exponential Decaying Memory (E-EDM) machine that can
attain any vanishing desired regret while outperforming the
EDM machine. In section VII we summarize the results and
suggest further research.

II. DEFINITIONS

Finite-state machine (FSM) is a commonly used model for
sequential machines with a limited amount of storage. In our
work we focus on time-invariant FSM.

Definition 1: A deterministic finite-state machine is defined
by:
• An array of k states where {S1, . . . , Sk} denote the value

assigned to each state.
• The prediction of the machine at time t, x̂t, is the value

assigned to the current state.
• The transition of the machine between states is defined

by the maximum up and down steps from each state i,
denoted mu,i and md,i correspondingly, and by a thresh-
old set {Ti,−md,i−1, Ti,−md,i

, . . . , Ti,mu,i−1, Ti,mu,i} for
each state i. Thus, if at time t the machine is at state
i, it jumps j states (−md,i ≤ j ≤ mu,i) if the input
sample xt satisfies Ti,j−1 ≤ xt < Ti,j . Note that the
thresholds are non-intersecting, where the union of them
covers the interval [a, b] (each input sample is assumed
to be bounded in [a, b]).

• Equivalently, a transition function, ϕ(i, x), can be defined
for each state i where x is the input sample:

ϕ(i, x) =



i−md,i , Ti,−md,i−1 ≤ x < Ti,−md,i

i−md,i + 1 , Ti,−md,i
≤ x < Ti,−md,i+1

...
i+mu,i − 1 , Ti,mu,i−2 ≤ x < Ti,mu,i−1

i+mu,i , Ti,mu,i−1 ≤ x < Ti,mu,i

Throughout this paper we discuss predictors designed for
input samples that are bounded in [0, 1]. It is easily notable
that any FSM designed to achieve regret smaller than R for
any sequence bounded in [0, 1], can be transformed into a
FSM that achieves regret smaller than (b − a)2R for any
sequence bounded in [a, b], where a, b ∈ R, by applying a
simple transformation - each state value Si is transformed into
a+ (b− a)Si and each thresholds set T i into a+ (b− a)T i.
Thus, all the results presented in this paper can be expanded
to the more general case, where each individual sequence is
assumed to be bounded in [a, b].

We further present a theorem that will use us throughout
this paper.

Definition 2: A circle is a cyclic closed set of L
states\predictions {x̂t}Lt=1, if there are input samples {xt}Lt=1

that rotate the machine between these states. A minimal circle
is a circle that does not contain the same state more than once.
An example is depict in Figure 1.

Fig. 1. Five states minimal circle. Arrows represent the jump at each time
t = 1, .., 5, induced by a sequence of five samples.

Theorem 1: The worst sequence for a given FSM takes the
machine to a minimal circle and rotates in it endlessly.

Proof: The proof is given in details in [15] where it
is shown that the worst binary sequence for a given FSM
w.r.t the log-loss function endlessly rotates the machine in a
minimal circle. The proof is based on partitioning any long
enough prediction sequence x̂1, ..., x̂n of a given FSM for an
input sequence x1, ...xn into minimal circles and a negligible
residual monotonic sequence. By using the convexity of the
log-loss function, the regret over the entire sequence is upper
bounded by the weighted average of the regrets of these
minimal circles. Therefore a sequence that endlessly rotates the
machine in the minimal circle with the highest regret will have
a greater regret. Concluding that the worst sequence endlessly
rotates the machine in a minimal circle. The proof for our case,
the worst continuous sequence w.r.t the square loss function,
is identical.

Note that there is an infinite number of sequences that can
rotate a machine in a minimal circle (any input sample x that
satisfies Ti,j−1 ≤ x < Ti,j induces a j states jump from state
i). In this paper we will refer the regret of a minimal circle as
the regret of the sequence that endlessly rotates the machine
in the minimal circle and achieve the highest regret.

III. THE EXPONENTIAL DECAYING MEMORY MACHINE

In [16] the Exponential Decaying Memory (EDM) machine
has been presented as a universal predictor for individual
binary sequences. It was further shown that the EDM machine
with k states achieves an asymptotic regret of O(k−2/3)
compared to the constant predictors class w.r.t the log-loss
(code length) and square-error functions.

We start by describing and adjusting the EDM machine for
our case, predicting individual continuous sequences:

Definition 3: The Exponential Decaying Memory machine
is defined by:
• k states {S1, ..., Sk} distributed uniformly over

[k−1/3, 1− k−1/3].
• The transition function between states satisfies:

x̂t+1 = Q(x̂t(1− k−2/3) + xtk
−2/3) , (3)

where x̂t is the prediction (state) at time t and Q is the
quantization function to the nearest state.
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Note that the spacing gap between states, denoted ∆,
satisfies:

∆ = 1−2k−1/3

k−1 ∼ k−1 , (4)

and the quantization function satisfies Q(y) = x̂t+1, if y
satisfies x̂t+1− 1

2∆ ≤ y < x̂t+1+ 1
2∆. Also note that the EDM

machine is a finite-memory approximation of the Cumulative
Moving Average predictor given in Equation (2), where 1

t+1

is replaced by the constant value k−2/3 (which was shown to
be optimal).

We now present asymptotic bounds on the regret achieved
by the EDM machine when used to predict individual contin-
uous sequences.

Theorem 2: The maximal regret of the k-states EDM ma-
chine (denoted UEDMk

), attained by the worst continuous
sequence, is asymptotically bounded by

1
2k
−2/3 +O(k−1) ≤ max

xn
1

R(UEDMk
, xn1 ) ≤ 17

4 k
−2/3

Proof: Consider L length sequence {xt}Lt=1 that endlessly
rotates the machine in a minimal circle of L states {x̂t}Lt=1.
The input sample at each time t can be written as follows:

xt = x̂t + (Pt∆ + δt)k
2/3 , (5)

where Pt ∈ Z denotes the number of states crossed by the
machine at time t, δt is a quantization addition that satisfies
|δt| < 1

2∆ and has no impact on the jump at time t, i.e. has
no impact on the prediction at time t+ 1. Since we examine
a minimal circle, the sum of states crossed on the way up
is equal to the sum of states crossed on the way down, i.e∑L

t=1 Pt = 0. By applying this and Jensen’s inequality, the
regret of the sequence can be upper bounded:

R(UEDMk
, xL1 ) ≤ 1

L

L∑
t=1

δ2
t k

4/3 − 1
L

L∑
t=1

2Pt∆k
2/3x̂t . (6)

The first term on the right hand side of Equation (6) depends
only on the quantization of the input samples, δt, thus we term
it quantization loss. The second term depends on the spacing
gap between states, ∆, thus we term it spacing loss. Hence,
the regret of the sequence is upper bounded by a loss incurred
by the quantization of the input samples and a loss incurred by
the quantization of the states’ values, i.e. the prediction values.
By applying |δt| < 1

2∆ we bound the quantization loss:

quantization loss = 1
L

L∑
t=1

δ2
t k

4/3 ≤ 1
4k
−2/3 . (7)

Now, let us upper bound the spacing loss. We define sub-
step as a a single state step that is associated with a full step,
e.g. a step of P > 0 states originated from state x̂ consist
P sub-steps, all associated with the origin state, x̂. Since we
examine minimal circle, it is possible to assign each down
sub-step to an up-step that crosses the same state (an up-step
of Pu states is assigned only with Pu down sub-steps). Noting
that Pt is positive for up-steps and negative for down-steps,

the following holds true:

− 1
L

L∑
t=1

Ptx̂t = − 1
L

∑
t∈{up steps}

Ptx̂t + 1
L

∑
t∈{down steps}

|Pt| x̂t

= 1
L

∑
t∈{up steps}

(
− Ptx̂t +

∑
j∈D(x̂t,Pt)

x̂j
)
, (8)

where D(x̂t, Pt) is the set of down sub-steps assigned to an
up-step at time t. x̂j is the origin state of sub-step j.

Fig. 2. Minimal circle of two up-steps and two down-steps
(solid lines). SSj are the down sub steps where D(Si, 3) =
{SS3, SS4, SS5} , D(Si+3, 2) = {SS1, SS2}. Note that sub steps
SS1, SS2, SS3 associated with origin state Si+5 while sub steps SS4, SS5

associated with origin state Si+2.

Since the farthest up or down step in the EDM machine
is k−2/3, all down sub-steps in D(x̂t, Pt) originated from a
state that is not higher than x̂t + Pt∆ + k−2/3 and Pt can be
bounded by Pt ≤ k−2/3

∆ ∼ k1/3. Applying these and ∆ ∼ k−1

into Equation (8) results:

− 1
L

L∑
t=1

Ptx̂t ≤ 1
L

∑
t∈{up steps}

Pt(Pt∆ + k−2/3) ≤ 2k−1/3 .

(9)

Thus, the spacing loss satisfies:

spacing loss = 2∆k2/3(− 1
L

L∑
t=1

Ptx̂t) ≤ 4k−2/3 . (10)

By using Theorem 1, the upper bound is proven. The proof for
the lower bound is given in Appendix I where we show that
there is a sequence that endlessly rotates the k-states EDM
machine in a minimal circle, incurring a regret of 1

2k
−2/3 +

O(k−1).
Note that Theorem 2 implies that the k-state EDM machine

achieves regret smaller than 17
4 k
−2/3 for any individual con-

tinuous sequence. Moreover, the regret of the worst sequence
is at least 1

2k
−2/3 +O(k−1).

IV. DESIGNING AN OPTIMAL FSM WITH A SMALL
NUMBER OF STATES

In the previous section we proposed the EDM machine as
a universal predictor for continuous sequences and showed
with an asymptotic analyze that it can achieve any vanishing
regret with large enough number of states. However, what
happens when only a small number of states are available?
In this section we search for the best universal predictor
with relatively small number of states. We start by presenting
the optimal machines for a single, two and three states. The
optimality is in sense of achieving the lowest maximal regret.



4

A. Single state universal predictor

The problem of finding the optimal single state machine has
a trivial solution - from symmetry aspects, the optimal state
is assigned with the value 1

2 and the worst sequence, constant
samples of 1 or 0, incurs a (maximal) regret of R = 1

4 .

B. Two states universal predictor

Fig. 3. Two states machine described geometrically over the [0, 1] axis.

A two states machine has two possible minimal circles
- zero-step circle (staying at the same state) and two steps
circle (toggling between the two states). The lowest maximal
regret is achieved when the regrets of both minimal circles
are equalized. Thus, the lowest state is assigned with the value
S1 =

√
R and a transition threshold 2

√
R and the second state

with S2 = 1−
√
R and a transition threshold 1− 2

√
R. Now,

let us analyze the two steps minimal circle. Since the regret
is convex with the input samples, there are only four possible
sequences that can incur the highest regret:

x1, x2, x1, x2, ...

where x1 = 0 or x1 = 1 − 2
√
R induces the down-step and

x2 = 1 or x2 = 2
√
R induces the up-step. By analyzing

the regrets of these sequences one can note that the sequence
0, 1, 0, 1, ... incur the highest regret. Equalizing the regret
incurred by this sequence to R results R = ( 3

8 )2 and the
optimal two states machine can be summarized:
• State values are:

S1 =
3

8
, S2 =

5

8

• The states transition function satisfies:

ϕ(1, x) =

{
1 if x < 3

4
2 otherwise

ϕ(2, x) =

{
1 if x < 1

4
2 otherwise

where ϕ(i, x) = j is the transition function from state i
to state j when the input sample is xt = x.

The worst sequence that endlessly rotates the machine in
one of the minimal circles incurs a (maximal) regret of R =
( 3

8 )2 = 0.14.
Thus, if the desired regret is smaller than 0.14 we need to

design a machine with more than two states.

C. Three states universal predictor

Fig. 4. Three states machine described geometrically over the [0, 1] axis.

With the same considerations as for the two states machine,
the lowest state is assigned with S1 =

√
R and the upper state

with S3 = 1−
√
R. From symmetry aspects, the middle state

is assigned with S2 = 1
2 . We also note that if a two states jump

is allowed from (to) the lower state to (from) the upper state,
the sequence 0, 1, 0, 1, ... toggles the machine between these
states, incurring a regret of ( 3

8 )2. Hence, only a single state
jump is allowed, otherwise the three states machine has no
gain over the two states machine. Thus, in the same manner
as for the two states machine, one can get that the optimal
three states machine satisfies:

• State values are:

S1 = 0.3285 , S2 = 0.5000 , S3 = 0.6715

• The states transition function satisfies:

ϕ(1, x) =

{
1 if x < 0.6570
2 otherwise

ϕ(2, x) =

 1 if x < 0.1715
2 if 0.1715 ≤ x < 0.8285
3 otherwise

ϕ(3, x) =

{
2 if x < 0.3430
3 otherwise

where ϕ(i, x) = j is the transition function from state i
to state j when the input sample is xt = x.

The worst sequence that endlessly rotates the machine in
one of the minimal circles incurs a (maximal) regret of R =
0.1079.

Figure 5 depict the states and the transition thresholds over
the [0, 1] axis. One can notice the hysteresis characteristics of
the machine, providing a “memory” or “inertia” to the finite-
state predictor. An extreme input sample is needed for the
machine to jump from the current state, that is, to change the
prediction value.

Fig. 5. Optimal three states machine described geometrically over the [0, 1]
axis along with the transition thresholds for each state. The X’s represent the
value assigned to each state.
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D. The class of DTM machines

We now want to find a more general solution for the best
universal predictor with a small number of states. We start by
defining a new class of machines.

Definition 4: The class of all k-states Degenerated Track-
ing Memory (DTM) machines is of the form:
• An array of k states. We denote the states in the lower

half {Skl
, ..., S1} (in descending order where S1 is the

nearest state to 1
2 and Si ≤ 1

2 for all 1 ≤ i ≤ kl).
We denote the states in the upper half {S̄1, ..., S̄ku} (in
ascending order where S̄1 is the nearest state to 1

2 and
S̄i >

1
2 for all 1 ≤ i ≤ ku), where kl + ku = k.

• The maximum down-step in the lower half, i.e. from
states {Skl

, ..., S1}, is no more than a single state jump.
The maximum up-step in the upper half, i.e. from states
{S̄1, ..., S̄ku

} is no more than a single state jump.
• A transition between the lower and upper halves is

allowed only from and to the nearest states to 1
2 , S1 and

S̄1 (implying that the maximum up-jump (down-jump)
from S1 (S̄1) is a single state jump).

An example for a DTM machine is depict in Figure 6.

Fig. 6. An example of a DTM machine - note that a transition between the
lower and upper halves is allowed only from (and to) S1 and S̄1. Solid lines
represent the maximum up or down jumps from each state.

In a DTM machine only a single state down-jump (up-jump)
from all states in the lower (upper) half is allowed. In addition,
the transition between the lower and upper halves is allowed
only from and to the nearest states to 1

2 , S1 and S̄1, implying
that the maximum up-jump (down-jump) from {Skl

, ..., S2}
({S̄2, ..., S̄ku

}) is up to S1 (S̄1). These constraints facilitate
the algorithm for constructing the optimal DTM machine.

E. Building the optimal DTM machine

We present here a schematic algorithm for constructing the
optimal DTM machine. Given a desired regret, Rd, the task
of finding the optimal DTM machine can be viewed as a
covering problem, that is, assigning the smallest number of
states in the interval [0, 1], achieving a regret smaller than Rd

for all sequences. We note that in an optimal k-state machine,
the upper half of the states is the mirror image of the lower
half. The symmetry property arises from the fact that any
sequence x1, ..., xn can be transformed into the symmetric
sequence 1−x1, ..., 1−xn. Both sequences achieve the same
regret if full symmetry between the lower and upper halves
is applied. Thus, assuming that the lower half is optimal in
sense of achieving the desired regret with the smallest number
of states, the upper half must be the reflection of the lower
half to achieve optimality. Note that this property allows us to
design the optimal DTM machine only for the lower half.

The algorithm we present here recursively finds the optimal
states’ allocation and their transition thresholds. Suppose states

{Si−1, ..., S1} in the lower half (in descending order where
S1 is the nearest state to 1

2 ) and their transition thresholds set
{T i−1, ..., T 1} are given and satisfying regret smaller than Rd

for all minimal circles between them. Our algorithm generates
the optimal Si, i.e. the optimal allocation for state i, and a
thresholds set, T i, satisfying regret smaller than Rd for all
minimal circles starting at that state.

We start by finding S1, the nearest state to 1
2 in the lower

half, in the optimal DTM machine.
Lemma 1: In the optimal k-states DTM machine for a given

desired regret Rd, S1 = 1
2 if k is odd and

S1 = max
{

1−
√
Rd + 1

4 , 2+
√
Rd−2

√
Rd +

√
Rd + 1

2

}
if k is even.

Proof: From symmetry aspects S1 = 1
2 in the optimal

DTM machine with odd number of states, otherwise there are
more states in one of the halves and the symmetry property
presented above does not hold. For even k, the nearest state
to 1

2 in the upper half, S̄1, is the mirror image of S1, hence
S̄1 = 1 − S1. By definition, only a single state up-jump is
allowed from S1 and only a single state down-jump is allowed
from S̄1. Thus, the machine can be rotated between these
states, constructing a two steps minimal circle. Denote by
x1 and x2 the samples that induce the up and down jumps,
correspondingly. These samples must satisfy the transition
thresholds, i.e.

S1 +
√
Rd ≤ x1 ≤ 1

0 ≤ x2 ≤ S̄1 −
√
Rd = 1− S1 −

√
Rd . (11)

Since the regret is a convex function over the input samples,
the regret of a minimal circle is brought to maximum by sam-
ples at the edges of the constraint regions. Thus, in a two steps
minimal circle there are four combinations that may maximize
the regret and need to be analyzed. Examining the regrets
in all four cases, results that S1 must satisfy two constraints
S1 ≥ 1−

√
Rd + 1

4 and S1 ≥ 2+
√
Rd−2

√
Rd +

√
Rd + 1

2 .
We choose the lowest S1 that satisfy these constraints.

Note that S1 must satisfy S1 ≤ 1
2 which does not hold for

low enough Rd, implying a lower bound on the achievable
regret of the optimal DTM machine (see section IV-F).

Now, after presenting the starting state of the algorithm, we
present the complete algorithm for constructing the optimal
DTM machine:

1) Set i = 1 and the corresponded starting state S1 for
odd or even number of states (see Lemma 1). Set the
maximum up-step from the starting state mu,1 = 1.

2) Set the next state index i = i+ 1.
3) For all 1 ≤ m ≤ i− 1 (where m denotes the maximum

up-step from state i) find the minimal Si,m with valid
thresholds set T i,m (in sequel we present the algorithm
for finding the thresholds set).

4) Choose the minimal Si,m among all possible maximum
up-steps, that is:

mu,i = arg min
1≤m≤i−1

Si,m
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Si = Si,mu,i

T i = T i,mu,i
.

Thus we have set the parameters of state i: assigned
value Si, maximum up-jump of mu,i states and transi-
tion thresholds T i.

5) If Si >
√
Rd go to step (2).

6) Set the upper half of the states to be the mirror image
of the lower half.

Explanations and Comments:
• For a given desired regret Rd, one should run the algo-

rithm presented above twice - for odd and even number
of states with the corresponded starting state, S1. The
optimal DTM machine is the one with the least states
among the two (differ by a single state).

• Note that a transition thresholds for state 1 need to be
given - a single state up-jump if the input sample satisfies
x ≥ S1 +

√
Rd and a single state down-jump if the input

sample satisfies x ≤ S1 −
√
Rd. These are the optimal

transition thresholds since as the interval for transition
is wider the number of possible worst sequences in
other minimal circles increases. Note that these transition
thresholds achieve the maximal regret Rd for zero-step
minimal circle (staying at S1).

• A valid thresholds set for state i is a set of transition
thresholds that satisfy regret smaller than Rd for all
minimal circles starting at state i.

To complete the construction of the optimal DTM machine,
we still need to present an algorithm for finding the optimal
transition thresholds at each iteration (Step (3)). Consider
states {Si−1, ..., S1} in the lower half and their transition
thresholds set {T i−1, ..., T 1} are given and satisfying regret
smaller than Rd for all minimal circles between them. Suppose
also Si and m are given, where m denotes the maximum up-
step from state i. Note that there are m + 1 minimal circles
starting at state i (depict in Figure 7):
• zero-step minimal circle (staying at state i).
• For any 2 ≤ j ≤ m+1, a minimal circle of j steps - one

up-step (of j − 1 states), j − 1 down-steps (of a single
state).

Also note that these m + 1 minimal circles are within the
lower half, that is within the states {Si−1, ..., S1} (since by
definition a transition from the lower half to the upper half is
allowed only from S1).

Fig. 7. m + 1 possible minimal circles starting at Si, where m is the
maximum up-step from state i.

Let xj1 be the samples that endlessly rotate the machine in
a j steps minimal circle, where x1 induces the up-step from

state i and xj2 induce the down-steps. Since the regret is convex
in the input samples, the samples xj2 that bring the regret to
maximum are at the edges of the transition regions, that is,
satisfying

xt = x̂t −
√
Rd or xt = 0 ∀ 2 ≤ t ≤ j . (12)

Suppose that for a given xj2, the regret of the sequence is
smaller than Rd if x1 satisfies

Cl(x
j
2) ≤ x1 ≤ Ch(xj2) . (13)

Thus, by Equation (12), x1 must satisfy the constraint given
in (13) for 2j−1 known combinations of xj2 to satisfy regret
smaller than Rd for any sequence that rotates the machine in
this minimal circle. Hence,

C̃l = max
xj
2∈Aj

Cl(x
j
2) ≤ x1 ≤ min

xj
2∈Aj

Ch(xj2) = C̃h (14)

satisfies all the constrains, where Aj is the set of 2j−1

combinations of xj2 according to Equation (12). Since x1 must
also satisfy the transition thresholds of state i, i.e.

Ti,j−2 ≤ x1 ≤ Ti,j−1 , (15)

we can conclude that the transition thresholds must satisfy

C̃l ≤ Ti,j−2 ,

Ti,j−1 ≤ C̃h . (16)

Going over all minimal circles, 2 ≤ j ≤ m+1, results bounds
on all transition thresholds (upper and lower bound on each
threshold). Thus, if a thresholds set can be found to satisfy all
bounds and to cover the interval [Si +

√
Rd , 1], we finished.

Otherwise, no valid thresholds can be found for the given Si

and m.
Lemma 2: Consider a sequence xj1 that rotates a DTM

machine in a j steps minimal circle starting at state i. Given
states Si, ..., Si−j+1, the regret is smaller than Rd if x1

satisfies:

a(xj2)− b(xj2) ≤ x1 ≤ a(xj2) + b(xj2) ,

where:

a(xj2) = Si +

j∑
t=2

(Si − xt) ,

b(xj2) = j

√√√√Rd −
1

j

j∑
t=2

(Si−j+t−1 − Si)(Si−j+t−1 + Si − 2xt) .

(17)

Proof: Analyzing the regret of the sequence and claiming
for regret smaller than Rd results the constrain on x1:

1

j

j∑
t=1

[(xt − x̂t)2 − (xt − x̄)2] ≤ Rd , (18)

where x̂1 = Si and x̂t = Si−j+t−1 for 2 ≤ t ≤ j.

We can now present the algorithm for finding a thresholds
set for state i given Si and m, the maximum up-step:
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1) Find Cj,l and Cj,h for all 2 ≤ j ≤ m+ 1 as follows:

Cj,l = max
xj
2∈Aj

{
a(xj2)− b(xj2)

}
,

Cj,h = min
xj
2∈Aj

{
a(xj2) + b(xj2)

}
, (19)

where a(xj2) and b(xj2) are given in (17) and Aj is the
set of 2j−1 combinations of xj2:

xt = Si−j+t−1 −
√
Rd or xt = 0 ∀ 2 ≤ t ≤ j .

(20)
2) If one of the following does not hold return and declare

that there are no valid thresholds:

Cj,l < Cj,h ∀ 2 ≤ j ≤ m ,

Cj+1,l ≤ Cj,h ∀ 2 ≤ j ≤ m ,

C2,l ≤ Si +
√
Rd ,

1 < Cm+1,h . (21)

3) Find a valid monotone increasing transition thresholds
{Ti,0, . . . , Ti,m} that satisfy:

Cj+1,l ≤ Ti,j−1 ≤ Cj,h ∀ 2 ≤ j ≤ m ,

C2,l ≤ Ti,0 ≤ Si +
√
Rd ,

1 < Ti,m ≤ Cm+1,h . (22)

4) Set the transition thresholds for the down-step
{0, Si −

√
Rd}.

Explanations and Comments:
• Cj,l < Cj,h must be satisfied otherwise there is no x1 that

satisfies regret smaller than Rd for all 2j−1 combinations
of xj2.

• Cj+1,l ≤ Cj,h must be satisfied otherwise there is no
Ti,j−1 satisfying both Ti,j−1 ≤ Cj,h and Cj+1,l ≤
Ti,j−1.

• Ti,0 ≤ x1 < Ti,1 induces a single state up-jump, hence,
Ti,0 must satisfy C2,l ≤ Ti,0. Also Ti,0 must satisfy
Ti,0 ≤ Si +

√
Rd to ensure regret smaller than Rd for

zero-step minimal circle (staying at state i).
• Ti,m−1 ≤ x1 < Ti,m induces m states up-jump, hence,
Ti,m must satisfy Ti,m ≤ Cm+1,h. The transition thresh-
olds must cover the interval [Si+

√
Rd, 1], therefore Ti,m

must also satisfy 1 < Ti,m.
• This algorithm provides thresholds set given the states
{Si−1, ..., S1} and m, the maximum up-step from state i.
It also requires Si. Recalling the algorithm for finding Si

- we search for the minimal Si,m with a valid thresholds
set for a given m. Thus, one can provide high Si,m and
reduce it until no valid thresholds set can be found.

Theorem 3: The algorithm given in this section constructs
the optimal DTM machine for a given desired regret, Rd, i.e.
has the lowest number of states among all DTM machines that
achieve regret Rd.

Proof: In each iteration the algorithm finds the minimal
Si with a valid thresholds set. Note that in DTM machines

the transition thresholds for up-steps, {Ti,0, ..., Ti,mu,i
}, do

not have an impact on regrets of minimal circles other than
those starting at state i. Thus, given Si, the optimality of these
thresholds is only in sense of satisfying regret smaller than
Rd for these minimal circles. As for the down thresholds
- an input sample x induces a down-step from state s if
satisfies 0 ≤ x < Ts,−1. As Ts,−1 is smaller for all states
s = i − 1, ..., 1 the achievable Si with a valid thresholds set
is smaller (the constrains are more relaxed). We choose the
smallest Ts,−1 for all states, i.e. Ss−

√
Rd. Furthermore, each

Ss is chosen to be minimal. We further show that optimality
is achieved when assigning the minimal value for all states.
Consider {S

dk2 e
, ..., S1} in the lower half are the outputs of

the algorithm for a given desired regret Rd. Let us examine the
case where the assigned value for state i−1 is S̃i−1 satisfying
S̃i−1 > Si−1. We note that the value assigned to state i−1 has
no impact on the optimality of states i−2, ..., 1. Furthermore,
the constrains on the up thresholds of state i depend only on
Ss − Si or S2

s − S2
i , where s = i− 1, ..., 1 (applying xt = 0

or xt = Si−j+t−1 −
√
Rd in Equation (17)). Since Si is the

minimal value with valid thresholds for {Si−1, ..., S1} , the
minimal value with valid thresholds for {S̃i−1, Si−2, ..., S1}
is not smaller than Si. This holds for all states dk2 e, ..., i and
therefore, choosing S̃i−1 does not reduce the number of states.

Thus, in all aspects optimality is achieved at each iteration
in the algorithm by assigning state i with the minimal value
Si, down thresholds {0, Si −

√
Rd} and valid up thresholds.

F. Lower Bound - The Limitation of the DTM Machines

Theorem 4: The achievable regret of any DTM machine is
lower bounded by

R = ( 1
6 )2 = 0.0278 .

Proof: In an optimal k-states DTM machine, where k is
even, the starting state S1, must satisfies

S1 = max{1−
√
Rd + 1

4 , 2+
√
Rd−2

√
Rd +

√
Rd + 1

2} ≤
1
2 ,

(23)
implying that if the desired regret satisfies

√
Rd < 1

6 , then
S1 > 1

2 and no DTM machine with even number of states
can be formed. We then conclude that also a DTM machine
with odd number of states can not be formed otherwise a sub-
optimal DTM machine with even number of states could have
been formed by adding another state.

G. Numerical results

Figure 8 shows numerical results (number of states vs.
regret) of the optimal DTM machine and the asymptotic EDM
machine (regret of 1

2k
−2/3). While the EDM machine can

achieve any vanishing regret with large enough number of
states, the lower bound for the DTM machine is depicted -
as the number of states grows, the achievable regret goes to
0.0278.

We further note that the optimal DTM machine with a
single, two and three states is identical to the optimal solution
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presented above for these machines, concluding that up to a
certain number of states, our algorithm generates the optimal
solution in sense of achieving the lowest maximal regret. Yet,
it is unresolved up to which number of states.

Fig. 8. The performance of the optimal DTM machine and the EDM machine.

V. LOWER BOUND ON THE ACHIEVABLE REGRET OF ANY
k-STATES MACHINE

In the previous section we have analyzed machines with
a relatively small number of states. We shall now study the
case of k-states machines, where k is relatively large. In
section III we have proposed the EDM machine and showed
that asymptotically, using enough states, it can achieve any
vanishing regret. However, is it the optimal solution? (i.e.
does it achieve a desired regret R with the lowest number
of states?). In this section we present a lower bound on
the number of states used by any machine that achieves a
maximal regret R.

Definition 5: Given a starting state Si, a Threshold Se-
quence x, denoted TS(x), is constructed for any x in the
following manner - if the current state is smaller than x, next
sample in the sequence is 1 (inducing an up-step), if not, next
sample is 0 (inducing a down-step).

For any starting state and any x, the constructed TS(x)
induces a monotone jumps to the vicinity of x and than rotates
the machine in a minimal circle. If the starting state is below
x, the TS(x) induces monotone up-steps until the machine
crosses x (or monotone down-steps if the starting state is
above x). In the vicinity of x the TS(x) rotates the machine
only in a bounded number of states - the lowest possible state
is bounded from below by the maximum down-jump from
the nearest state to x and the highest possible state is upper
bounded by the maximum up-jump from the nearest state to
x. Therefore, the TS(x) endlessly rotates the machine in a
finite number of states, thus inducing a minimal circle. We
can conclude that for any x there is a starting state that the
corresponded TS(x) induces a minimal circle (removing the
monotone jumps). As from now, we assume that any TS(x)
endlessly rotates the machine in a minimal circle without the

monotone part.

Lemma 3: Consider a FSM that achieves a maximal regret
R. A TS(x) induces a minimal circle where at least half of
its states are within R

x from x for any x ≤ 1
2 and R

1−x for
any x > 1

2 .
Proof: Let us examine the regret of a TS(x), where x ≤

1
2 , that rotates a FSM, denoted U , in a minimal circle of length
L. Since the empirical mean of the sequence, x̄, achieves the
minimal square error, the regret satisfies:

R(U, xL1 ) ≥ 1
L

L∑
t=1

(xt − x̂t)2 − (xt − x)2

≥ 1
L

L∑
t=1

2(x− x̂t)(xt − x) . (24)

We note that by construction (x− x̂t)(xt − x) is positive for
all t. Moreover, since x ≤ 1

2 and xt = 1 for up-steps and
xt = 0 for down-steps, it follows that:

R(U, xL1 ) ≥ 1
L

L∑
t=1

2 |x− x̂t|x . (25)

Hence half of the states have to be within R
x from x, otherwise

we get a regret higher than R. In the same manner it can be
shown that for x > 1

2 half of the states have to be within R
1−x

from x.

Lemma 4: Consider a FSM that achieves a maximal regret
R. The maximum number of states crossed in an up-step and
in a down-step from state Si, for any i, must satisfy

mu,i ≥ 1−(Si+
√
R)

2
√
R

, (26)

md,i ≥ Si−
√
R

2
√
R

. (27)

Proof: See Appendix II.

Note that Lemma 4 implies the same lower bound on
the achievable regret of any DTM machine, R ≥ ( 1

6 )2 (as
presented in section IV). Any DTM machine allows only a
single state down-jump from all states below 1

2 . Thus, a DTM
machine can achieve regret R if all states below 1

2 satisfy
Equation (27) with md,i = 1, hence:

1
2−
√
R

2
√
R
≤ 1 . (28)

Furthermore, Lemma 4 provides a lower bound on the max-
imal regret of any machine that allocates a state Si with
maximum up and down jumps of mu,i and md,i states.

Theorem 5: The number of states in any deterministic FSM
that achieves a regret smaller than R for any continuous
sequence, is lower bounded by

1
24R

−3/2 +O(R−1) .

Proof: Consider a k-states machine that achieves a regret
smaller than R for any sequence. Lemma 3 implies that for
any x ≤ 1

2 there is a TS(x) that forms a minimal circle in
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the vicinity of x where at least half of the states are within
R
x from x. Since the samples of the TS(x) are either 0 or 1,
the constructed minimal circle is of at least mu,i states, where
mu,i is the maximum up-jump from the nearest state to x,
denoted state i. Thus, there are at least 1

2mu,i states within
R
x from x. Lemma 4 implies that the maximum up-step from
state i is at least mu,i = d 1−Si−

√
R

2
√
R
e states, where Si is the

assigned value to state i.
We define the interval B(mu) as all x’s satisfying:

mu = d 1−x−
√
R

2
√
R
e . (29)

Let us take: ⋃
mu∈N

B(mu) = [0, 1
2 ] . (30)

Using the fact that the minimal number of states in the lower
half is equal to the minimal number of states in the upper half
we can conclude that k, the number of states, satisfies:

k ≥ 2
∑

mu∈N
min

x∈B(mu)

|B(mu)|
R/x

1
2mu

=
∑

mu∈N
min

x∈B(mu)

|B(mu)|
R/x d

1−x−
√
R

2
√
R
e

≥ 1
2R
−3/2

∑
mu∈N

min
x∈B(mu)

|B(mu)|x(1− x−
√
R) . (31)

Since |B(mu)| = 2
√
R for almost all mu (|B(mu)| ≤ 2

√
R

at the edges of the interval [0, 1
2 ]) and x(1− x) is a concave

function with a singular maximum point at 1
2 we can conclude

that choosing x = min{x ∈ B(mu)} brings the most right
hand side of Equation (31) to minimum, thus:

k ≥ 1
2R
−3/2

b1/(4
√
R)c∑

i=1

2
√
R( 1

2 − 2
√
Ri)( 1

2 + 2
√
Ri−

√
R)

≥ 1
24 (R−3/2 − 9R−1 − 4R−1/2) . (32)

Note that Theorem 5 implies that a k-states FSM can not
achieve a regret smaller than

(24k)−2/3 +O(k−1) (33)

for all sequences, i.e. the maximal regret is lower bounded by
(33).

VI. ENHANCED EXPONENTIAL DECAYING MEMORY
MACHINE

In this section we present a new FSM named the Enhanced
Exponential Decaying Memory (E-EDM) machine, targeting
to achieve any vanishing desired regret. We show that the
E-EDM machine outperforms the performance of the EDM
machine and approaches the lower bound presented in the
previous section.

A. Designing the E-EDM machine

The algorithm for constructing the E-EDM machine for a
desired regret, denoted Rd, is as follows:
• Set R = Rd

2 .
• Divide the [0, 1] axis into segments, where a segment
A(mu,md) is defined as the set of all x’s satisfying:

mu = d 1−x−
√
R

2
√
R
e ∀ x ∈ A(mu,md) ,

md = dx−
√
R

2
√
R
e ∀ x ∈ A(mu,md) . (34)

• According to Lemma 4, assign all states in segment
A(mu,md) with maximum up and down jumps of
mu, md states, correspondingly.

• Linearly spread states in each segment A(mu,md) with
a ∆(mu,md) spacing gap between them where

∆(mu,md) =
√
R

2mu·md
. (35)

• We further need to guarantee the desired regret when
the machine traverses between segments. Consider two
adjacent segments A(mu,1,md,1) and A(mu,2,md,2) and
suppose the spacing gap in the second segment is smaller.
Add states to the first segment such that the closest
(mu,1+md,1) states to the second segment have a spacing
gap of ∆(mu,2,md,2). It can be shown that at most two
states need to be added to each segment. Figure 9 depict
the spacing gap in two adjacent segments.

• Assign transition thresholds for each state i as follows:

Ti,j = Si+(2j+1)
√
R ∀ −md,i ≤ j ≤ mu,i , (36)

that is, if the machine at time t is at state i, it jumps j
states if the current outcome, xt, satisfies:

Si + (2j − 1)
√
R ≤ xt < Si + (2j + 1)

√
R . (37)

Note that as required, the transition thresholds cover
the [0, 1] axis (arises from the chosen maximum up and
down jumps).

Fig. 9. Spacing gap of the E-EDM machine. Adjacent segments
A(mu,1,md,1) and A(mu,2,md,2) with spacing gap ∆s =

√
R

2mu,smd,s

where s = 1, 2 and ∆2 < ∆1. Note that the spacing gap between the highest
mu,1 + md,1 states in segment A(mu,1,md,1) is ∆2 while the maximum
up and down jumps from these states are mu,1 and md,1 states.

Theorem 2 implies that the maximal regret of the k-states
EDM machine is at least 1

2k
−2/3. Note that if equality holds,

the definitions of the EDM machine, excluding the part of
allocating states, are identical to the definitions of the E-EDM
machine. Thus, the new machine presented here can be
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regarded as an improvement of the EDM machine by better
allocating the states - the states of the EDM are uniformly
distributed over the interval [0, 1] while in the E-EDM machine
the interval [0, 1] is divided into segments and states are
uniformly distributed with a different spacing in each segment.

Theorem 6: The regret of the E-EDM machine is smaller
than Rd for any input sequence.

Proof: Consider a sequence xL1 that endlessly rotates the
E-EDM machine (denoted UE−EDM ) in a minimal circle of
L states x̂L1 . Each input sample xt can be written as follows:

xt = x̂t + 2
√
R · Pt + δt , (38)

where Pt is the number of states the machine crosses at time
t (−md ≤ Pt ≤ mu) and δt satisfies δt ≤

√
R and can be

regarded as a quantization addition that has no impact on the
jump at time t, i.e. has no impact on the next prediction. Since
we examine a minimal circle, the sum of states crossed on the
way up is equal to the sum of states crossed on the way down,
i.e
∑L

t=1 Pt = 0. By applying this and Jensen’s inequality, the
regret of the sequence satisfies:

R(UE−EDM , x
L
1 ) ≤ 1

L

L∑
t=1

δ2
t − 4

√
R 1

L

L∑
t=1

Pt(x̂t − x̂1) .

(39)

We term the first loss in the right hand side of Equation (39)
quantization loss (since it depends only on δt, the quantization
of the input sample, xt). By applying δt ≤

√
R we get:

quantization loss = 1
L

L∑
t=1

δ2
t ≤ R . (40)

We term the second loss in the right hand side of Equation
(39) spacing loss (since x̂t − x̂1 depends only on the spacing
gap between states). Thus, as we sowed for the EDM machine,
the regret of the sequence is upper bounded by a loss incurred
by the quantization of the input samples and a loss incurred
by the quantization of the states’ values, i.e. the prediction
values.

Lemma 5: For any sequence xL1 that endlessly rotates the
E-EDM machine in a minimal circle of states x̂L1 , where the
spacing gap between all states is identical, the spacing loss is
smaller than R satisfying:

spacing loss = −4
√
R 1

L

L∑
t=1

Pt(x̂t − x̂1) ≤ R . (41)

Proof: See Appendix III.
Lemma 6: For any sequence xL1 that rotates the E-EDM

machine in a minimal circle of states x̂L1 , where the spacing
gap is not equal between all states, the spacing loss is smaller
than R satisfying:

spacing loss = −4
√
R 1

L

L∑
t=1

Pt(x̂t − x̂1) ≤ R .

Proof: See Appendix IV.
Since R = Rd

2 and by applying Theorem 1 we conclude
that the E-EDM machine achieves a regret smaller than Rd

for any sequence.

Theorem 7: The number of states in an E-EDM machine
designed to achieve a regret smaller than Rd for all sequences
is

1
12 (Rd

2 )−3/2 +O(R−1
d ) .

Proof: See Appendix V.

B. Numerical results

Theorem 2 implies that the asymptotic worst regret of the
k-states EDM machine is at least 1

2k
−2/3. Thus, the number

of states in an EDM machine that achieves a regret Rd, is at
least (2Rd)−3/2 states. Theorem 5 implies that the asymptotic
number of states of any deterministic FSM that achieves a
maximal regret Rd is at least 1

24R
−3/2
d . Theorem 7 implies that

the asymptotic number of states in an E-EDM machine that
achieves a regret Rd is 1

12 (Rd

2 )−3/2. Thus we can conclude
that:

1) For a given desired regret, the E-EDM machine outper-
forms the EDM machine in number of states by a factor
of:

23/2

12 R
−3/2
d

(2Rd)−3/2 = 2
3 ,

i.e. uses only 2
3 of the states needed for the EDM

machine to achieve the same maximal regret.
2) For a given desired regret, the E-EDM machine ap-

proaches the lower bound with a factor of about:

23/2

12 R
−3/2
d

1
24R

−3/2
d

= 25/2 = 5.6 .

Simulation results are presented in Figure 10. Note that the
theoretical results match the numerical results and show that
for a large number of states the E-EDM machine outperforms
the EDM machine by a factor of ∼ 2

3 and approaches the
lower bound with a factor of ∼ 6.

Fig. 10. Comparing the performance of the E-EDM machine, the EDM
machine and the lower bound.
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VII. SUMMARY AND CONCLUSIONS

In this paper we studied the problem of universal least
squares prediction of individual continuous-alphabet se-
quences when limited resources are available.

For universal predictors with a small number of states, or
equivalently for high allowable regret, we presented the op-
timal Degenerated Tracking Memory (DTM) machine, which
performs well with a small number of states yet its achievable
regret is lower bounded by R = 0.0278. Numerical results
showed that the optimal DTM machine indeed outperforms
any other machine for a small enough number of states.
However, it is still unknown up to which number of states
it is the best universal predictor. For number of states larger
than that, one can try to attain better performance by easing
the constrains of the DTM machines and allowing more than a
single state down-jump (up-jump) from all states in the lower
(upper) half. However, the construction of the optimal machine
in this case is much more complex.

For universal predictors with a large number of states,
or equivalently for any vanishing desired regret, we proved
a lower bound of O(k−2/3) on the achievable regret of
any k-state machine. We proposed the Exponential Decaying
Memory (EDM) machine and showed that the worst sequence
incurs a bounded regret of O(k−2/3), where k is the number
of states. We further presented the Enhanced Exponential
Decaying Memory (E-EDM) machine which outperforms the
EDM machine. The E-EDM machine can be regarded as an
improvement of the EDM machine by better allocating the
states over the interval [0, 1]. Recalling that the EDM machine
is a finite-memory approximation of the Cumulative Mov-
ing Average predictor which is the best unlimited resources
universal predictor (w.r.t the non-universal empirical mean
predictor), we can understand why both the EDM and the
E-EDM machines approach optimal performance.

Analyzing the performance of the EDM and the E-EDM
machines showed that the regret of any sequence can be upper
bounded by the sum of two losses - quantization loss, the loss
incurred by the quantization of the input samples, and spacing
loss, the loss incurred by the quantization of the prediction
values. It is worth mentioning that the worst regret of the
optimal DTM machine can also be upper bounded by the sum
of these losses. As the number of states in the optimal DTM
machine increases, the quantization loss goes to the lower
bound, R = 0.0278, and the spacing loss goes to zero. Thus,
understanding the optimal allocation between these two losses
may lead to the answer of up to which number of states the
optimal DTM machine is the best universal predictor. It is also
worth mentioning that the E-EDM machine is constructed with
allocating half of the desired regret to the quantization loss and
the other half to the spacing loss. A further optimization may
be obtained by a different allocation.

Throughout this paper we assumed that the sequence’s
outcomes are bounded. Note that this constraint is mandatory.
Since the performance is analyzed by the worst sequence,
there is no universal predictor which attains a finite regret
for unbounded sequences (a sequence which incur an infinite
regret can always be found). However, an optional further

study is to expand the results we achieved to a more relaxed
case, e.g. sequences where the difference between consecutive
outcomes is bounded.

In this study we essentially examined finite-memory uni-
versal predictors trying to attain the performance of the (non-
universal) “zero-order”, constant predictor, i.e. trying to attain
the empirical variance of any individual continuous sequence.
We believe that our work is the first step in the search for
the best finite-memory universal predictor trying to attain the
performance of the best (non-universal) L-order predictor, for
any L.

APPENDIX I
PROOF OF THE LOWER BOUND GIVEN IN THEOREM 2

Proof: Here we show that there is a continuous-valued
sequence which rotates the EDM machine (denoted UEDM )
in a minimal circle incurring a regret of 1

2k
−2/3 +O(k−1).

Consider the following minimal circle - m states up-step,
m− 1 states down-step, m states up-step, m− 1 states down-
step and so on m − 1 times. The last step is a down-step of
m − 1 states that close the circle and return the machine to
the initial state. Denoting the states’ gap by ∆, the described
sequence can be written as follows:

x1 = x̂1 + (m+ 1
2 − ξ)∆k

2/3

x2 = x̂1 +m∆− (m− 1− 1
2 + ξ)∆k2/3

x3 = x̂1 + ∆ + (m+ 1
2 − ξ)∆k

2/3

...

x2m−3 = x̂1 + (m− 2)∆ + (m+ 1
2 − ξ)∆k

2/3

x2m−2 = x̂1 + (2m− 2)∆− (m− 1− 1
2 + ξ)∆k2/3

x2m−1 = x̂1 + (m− 1)∆− (m− 1− 1
2 + ξ)∆k2/3

where ξ → 0.
Analyzing the regret of the described sequence results:

R(UEDM , x
2m−1
1 ) = 1

4∆2k4/3 +m(m− 1)∆2k2/3 − m(m−1)
3 ∆2

= 1
4k
−2/3 +m(m− 1)k−4/3 − m(m−1)

3 k−2 .
(42)

Note that in the vicinity of 1
2 an input sample 1 or 0 induces

an up or down step (accordingly) of 1
2k
−2/3. Therefore we can

choose:

m =
1
2k−2/3

∆ ∼ 1
2k

1/3 . (43)

We further note that there is x̂1 for which all samples are
valid, meaning all samples satisfy 0 ≤ xt ≤ 1. For example:
x̂1 = 1

2 −
1
2k
−1/3 − 1

2k
−2/3.

Now, applying Equation (43) into Equation (42) results:

regret = 1
2k
−2/3 − 1

2k
−1 − 1

12k
−4/3 + 1

6k
−5/3

= 1
2k
−2/3 +O(k−1) . (44)
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APPENDIX II
PROOF OF LEMMA 4

Proof: Consider a sequence x1, ..., xL+1 that rotates a
FSM, denoted U , in a minimal circle, where x1 induces a
single up-jump of L states and xL+1

2 induce down-jumps of a
single state. Since the regret of any zero-step minimal circle is
smaller than R, an input sample that satisfies x = x̂t−

√
R−ε,

where ε → 0+, must induce a down-jump of at least one
state. Thus, we can always choose the input samples xL+1

2 to
satisfies xt ≥ x̂t−

√
R. We shall also assume that x1 satisfies:

x1 > x̂1 + (1 + 2L)
√
R , (45)

where x̂1 = Si. We show that this assumption can not hold
true.

By denoting λt = x̂t− x̂1 we note that the empirical mean
of the sequence satisfies:

x̄ ≥ x̂1 +
√
R+ 1

L+1

L+1∑
t=1

λt . (46)

Now, let us examine the regret incurred by the described
sequence:

R(U, xL1 ) = 1
L+1

L+1∑
t=1

(xt − x̂t)2 − (xt − x̄)2

= (x̄− x̂1)2 + 1
L+1

L+1∑
t=1

λ2
t − 2λt(xt − x̂1)

≥(x̄− x̂1)2 − 1
L+1

L+1∑
t=1

λ2
t (47)

≥(
√
R+ 1

L+1

L+1∑
t=1

λt)
2 − 1

L+1

L+1∑
t=1

λ2
t (48)

> R+ 1
L+1

L+1∑
t=1

(2
√
R− λt)λt , (49)

where (47) follows λt ≥ 0 and xt ≤ x̂t for all the down
samples xL+1

2 , (48) follows (46). In [13] it is shown that in a
FSM that achieves a maximal regret R w.r.t binary sequences,
the maximal up-jump is no more than 2

√
R. Therefore, this

must hold also for continuous-valued sequences. Hence, in the
discussed minimal circle all states are within 2

√
R from the

initial state, that is 2
√
R ≥ λt for all t and we get R(U, xL1 ) >

R.
We can now conclude that to achieve a regret smaller than

R, any input sample x that induces an L states up-jump from
state i, must satisfy:

x ≤ Si + (1 + 2L)
√
R . (50)

Since an input sample 1 induces an mu,i states jump from
state i we conclude that the following must be satisfied:

1 ≤ Si + (1 + 2mu,i)
√
R . (51)

In the same manner it can be shown that 0 ≥ Si − (1 +
2md,i)

√
R.

APPENDIX III
PROOF OF LEMMA 5

Proof: First we note that:

− 1
L

L∑
t=1

Pt(x̂t − x̂1) = − 1
L

L∑
t=1

Ptx̂t , (52)

where we used
∑L

t=1 Pt = 0. Note that Ptx̂t is positive for
up-steps and negative for down-steps. We consider a minimal
circle within a segment A(mu,md) that crosses states with
the same spacing gap, denoted ∆ = ∆(mu,md). It follows
that:

− 1
L

L∑
t=1

Pt(x̂t − x̂1) = − 1
L

L∑
t=1

Pt

t−1∑
j=1

Pj∆ .

Define mixed sequences as sequences where the up and
down steps are interlaced. Define straight sequences as se-
quences where all the up-steps are first, followed by all the
down-steps (consecutive in time). We show that any mixed
sequence with {Pt}Lt=1 jumps that rotates the machine in a
minimal circle with the same spacing gap for all states can
be transformed into a straight sequence with the same jumps
only in a different order (up-jumps are first) without changing
the spacing loss of the sequence. First we note that for any
three interlaced jumps

up jump → down jump → up jump,

that cross
Pu,1 → Pd → Pu,2

states (accordingly), the following holds true:

Pu,1x̂u,1 + Pd(x̂u,1 + Pu,1∆)+

+ Pu,2(x̂u,1 + (Pu,1 + Pd)∆)

= Pu,1x̂u,1 + Pu,2(x̂u,1+

+ Pu,1∆) + Pd(x̂u,1 + (Pu,1 + Pu,2)∆) . (53)

Thus, Equation (53) implies that the spacing loss of these three
jump does not change when the order of the jumps is:

up jump → up jump → down jump.

This can be shown also for a sequence with more than one
consecutive down-jumps between two up-steps:

up jump → down jump → ... → down jump → up jump .

Hence, in a recursive way any mixed sequence can be trans-
formed into a straight sequence without changing the spacing
loss by moving all the down-jumps to the end of the sequence.
In the rest of the proof we shall assume straight sequences.
Note that this transformation changes the states of the minimal
circle, but since we transform the sequence only for an easier
analyze, we can assume that all states still have the same
spacing gap. Figure 11 gives an example.

We continue by proving that applying maximum up and
down steps maximize the spacing loss. Consider two consec-
utive down-steps of Pd1

, Pd2
states staring at state x̂, with a

total of C states, i.e |Pd1
|+ |Pd2

| = C. Note that we examine
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Fig. 11. An example for a mixed sequence transformed into a straight
sequence.

two down-steps, thus C ≤ 2md. The spacing loss of these two
down-steps is:

x̂·|Pd,1|+(x̂−|Pd,1|∆)·|Pd,2| = x̂·C−|Pd,1| (C−|Pd,1|)∆ .
(54)

If C ≤ md the spacing loss is maximized for |Pd,1| = C
and |Pd,2| = 0. If md ≤ C ≤ 2md then the spacing loss is
maximized for |Pd,1| = md. We got that we can maximize the
spacing loss by taking a couple of down-steps and unite them
into a single down-step (if together they cross no more than
md states), or to apply maximum down-step, md, to the first
and C−md to the second (if together they cross more than md

states). Thus, assuming straight sequences, we can start with
the first couple of down-steps, maximize the spacing loss by
applying maximum down-step, then take the third down-step
and apply maximum down-step with the new down-steps that
were created. In a recursive way we can maximize the spacing
loss by applying maximum down-steps (note that the number
of down-steps reduces which also maximize the spacing loss).
In the same manner it can be shown that applying maximum
up-steps maximize the spacing loss.

Fig. 12. An example for the worst case spacing loss of a minimal circle that
crosses 5 states in the segment A(3, 2).

Consider a minimal circle of C states crossed on the way
up and down, all in the segment A(mu,md). The worst case
scenario for the spacing loss is composed of Nu up-steps each
of mu states jump (maximum up-jump), a single up-step of
cu states, where cu = mod(C,mu), Nd down-steps each of
md states jump (maximum down-jump), and a single down-
step of cd states, where cd = mod(C,md). Nd and Nu satisfy
C = Numu + cu and C = Ndmd + cd. It can be shown that
the position in the sequence of the single up-step (of cu states)
and the single down-step (of cd states) has no impact on the
spacing loss. Let us analyze the spacing loss of the straight

sequence. First, all up-steps satisfy:

− 1
L

∑
t∈{up steps}

Pt(x̂t − x̂1) =

= − 1
L∆(

Nu−1∑
i=0

mu(i ·mu) +Numucu)

= − 1
L∆(m2

u
Nu(Nu−1)

2 +Numucu)

= − 1
L

∆
2 (C2 −muC + cu(mu − cu)) . (55)

In the same manner, all down-steps satisfy:

− 1
L

∑
t∈{down steps}

Pt(x̂t − x̂1) =

= 1
L∆(

Nd∑
i=1

md(i ·md) + cdC)

= 1
L

∆
2 (C2 +mdC − cd(md − cd)) . (56)

Thus, the worst case scenario of the spacing loss satisfies:

− 1
L

L∑
t=1

Pt(x̂t − x̂1) =

= 1
L

∆
2 (C(mu +md)− cu(mu − cu)− cd(md − cd))

(57)

≤ 1
L

∆
2 C(mu +md) , (58)

where the length of the circle satisfies:

L = d C
mu
e+ d C

md
e ≥ C

mu
+ C

md
. (59)

Therefore, the worst case scenario satisfies:

− 1
L

L∑
t=1

Pt(x̂t − x̂1) ≤ mumd

2 ∆ . (60)

Since ∆ = ∆(mu,md) =
√
R

2mumd
we get that the spacing loss

for any minimal circle within a segment (and with identical
spacing gap between all states) satisfies:

spacing loss ≤ 4
√
Rmumd

2 ∆(mu,md) = R . (61)

APPENDIX IV
PROOF OF LEMMA 6

Proof: We denote two adjacent segments by
A(mu,1,md,1) and A(mu,2,md,2). Assume A(mu,1,md,1)
is the lower segment and the minimal circle starts at the
lowest state. Denote the spacing gap of each segment by
∆1 = ∆(mu,1,md,1) and ∆2 = ∆(mu,2,md,2). Note that
if ∆1 < ∆2 then mu,2 = mu,1 − 1 , md,2 = md,1 and if
∆1 > ∆2 then mu,2 = mu,1 , md,2 − 1 = md,1.

First we assume that the minimal circle traverse between the
segments only once (that is, once on the way up and once on
the way down). We also assume that ∆1 < ∆2. We can now
divide the minimal circle into two virtual minimal circles - take
the up-step that traverse the machine to the higher segment
and denote the destination state of this jump by x̂c. Take a
down-step that crosses state x̂c and split it into two steps -
assuming the down-step crosses Pd states, cd states jump to



14

Fig. 13. Spacing gap between states in the connection between the segments
A(mu,1,md,1) and A(mu,2,md,2). See the E-EDM machine definitions in
section VI.

state x̂c and (Pd − cd) states jump from state x̂c. Note that
two minimal circles were constructed - left minimal circle
that traverse C1 states and right minimal circle that traverse
C2 states. This is depict in Figure 14. The spacing loss of the
down-step satisfies:

Pd(x̂c+cd∆1) = cd(x̂c+cd∆1)+(Pd−cd)x̂c+(Pd−cd)cd∆1 .
(62)

Fig. 14. Minimal circle that traverse once between segments. Splitting the
marked down-step that crosses state x̂c into two down-steps, creating two
virtual minimal circles to the right and left. Note that since the first mu,2 +
md,2 states at the second segment are with spacing gap ∆1, the marked
down-step must only cross states with spacing gap ∆1.

Note that x̂c is in the upper segment but we used ∆1 since
the first mu,2 +md,2 states in the upper segment have spacing
gap of ∆1 (see the construction of the E-EDM machine in
section VI-A). Also note that the first term in the right hand
side of Equation (62) belongs to the spacing loss of the right
minimal circle and the middle term belongs to the spacing loss
of the left minimal circle. Note that the spacing loss of the
minimal circle is compose of the spacing loss of the left and
right minimal circles and the last term in Equation (62). The
left minimal circle traverse C1 states, all with spacing gap
∆1. The right minimal circle traverse C2 states, some with
spacing gap ∆1 and some with ∆2. We can now conclude
that the spacing loss satisfies:

spacing loss ≤ 4
√
R 1

L

(
[C1(mu,1 +md,1)

− (Pd − cd)(md,1 − (Pd − cd))]∆1

2

+ [C2(mu,2 +md,2)− cd(md,2 − cd)]∆2

2

+ cd(Pd − cd)∆1

)
, (63)

where we applied Lemma 5 (Equation (57)) to bound the
spacing loss of the left and right minimal circles. Note that
Lemma 5 is true for the right minimal circle since all states
have a spacing gap that is no more than ∆2. Now, since

md,1 = md,2 and ∆1 < ∆2 we get:

spacing loss ≤ 4
√
R 1

L (C1(mu,1 +md,1)∆1

2 +

+ C2(mu,2 +md,2)∆2

2 )

= R 1
L ( C1

md,1
+ C1

mu,1
+ C2

md,2
+ C2

mu,2
) . (64)

Let us bound the length of the minimal circle:

L ≥ d C1

mu,1
e+ d C2

mu,2
e+ dC1+C2

md,1
e

≥ C1

mu,1
+ C2

mu,2
+ C1+C2

md,1
. (65)

Applying this into Equation (64) results:

spacing loss ≤ R . (66)

Assume again that the minimal circle traverse between the
segments only once but now assume ∆1 > ∆2. Divide the
minimal circle into two virtual minimal circles in the same
manner as above but now take the down-step that traverse the
machine to the lower segment and split an up-step. In the same
manner we can show that the spacing loss is not more than
R.

If assuming that the minimal circle traverse between seg-
ments m times, in the same manner as above we can divide
the circle into m left minimal circles and m right minimal
circles and bound the spacing loss.

APPENDIX V
PROOF OF THEOREM 7

Proof: Consider an E-EDM machine that was designed
to achieve regret Rd. By denoting R = Rd

2 , the number of
states satisfies:

k ≤
∑

mu,md∈N
( |A(mu,md)|

∆(mu,md) + 2) , (67)

where all states in the segment A(mu,md) have a maximum
up and down step of mu, md states and ∆(mu,md) spacing
gap. As shown in the definitions of the E-EDM machine in
section VI, we add to each segment at most two states to
ensure regret smaller than Rd for sequences that rotate the
E-EDM machine in a minimal circle that traverse between
segments. Note that there are at most d 1

2
√
R
e segments.

Let us examine Equation (67):

k ≤ R−1/2 + 2 +
∑

mu,md∈N

|A(mu,md)|
∆(mu,md)

= R−1/2 + 2 +
∑

mu,md∈N

|A(mu,md)|√
R

2mumd

= R−1/2 + 2 + 2R−1/2
∑

mu,md∈N
|A(mu,md)| ·

· d 1−x−
√
R

2
√
R
e · dx−

√
R

2
√
R
e
∣∣∣
x∈A(mu,md)

≤ R−1/2 + 2 + 1
2R
−3/2

∑
mu,md∈N

|A(mu,md)| ·

·
(
x(1− x) +

√
R+R

)∣∣∣
x∈A(mu,md)

.

(68)
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By denoting the segments with the same maximum up-step as
B(mu), we can further bound the number of states:

k ≤ 1
2 (R−1 + 3R−1/2) + 2 + 1

2R
−3/2

∑
mu∈N

|B(mu)| ·

· max
x∈B(mu)

x(1− x) . (69)

Since |B(mu)| = 2
√
R for almost all mu (|B(mu)| ≤ 2

√
R at

the edges of the interval [0, 1
2 ]), x(1−x) is a concave function

with a singular maximum point at 1
2 and the number of states

in the lower and upper halves is equal, we get:

k ≤ 1
2

(
R−1 + 3R−1/2

)
+ 2+

+R−3/2

d 1
4
√
R
e∑

i=1

2
√
R(
√
R+ i2

√
R)(1− (

√
R+ i2

√
R))

≤ 1
12R

−3/2 − 5
12R

−1 − 12R−1/2 − 32

= 23/2

12 R
−3/2
d +O(R−1

d ) , (70)

where we applied R = Rd

2 .
We can also bound the number of states from below by:

k ≥
∑

mu,md∈N

|A(mu,md)|
∆(mu,md)

≥ 1
2R
−3/2

∑
mu,md∈N

|A(mu,md)| ·
(
x(1− x)−

−
√
R+R

)∣∣∣
x∈A(mu,md)

. (71)

By denoting the segments with the same maximum up-step as
B(mu), we can bound the number of states from below:

k ≥ 1
2

(
−R−1 +R−1/2+

+R−3/2
∑

mu∈N
|B(mu)| · min

x∈B(mu)
x(1− x)

)
.

(72)

Using the approximation we made to calculate the lower bound
we get:

k ≥ 1
12 (R−3/2 − 15R−1 + 2R−1/2)

= 1
12 (Rd

2 )−3/2 +O(R−1
d ) . (73)

Thus, we upper and lower bounded the number of states in
the E-EDM machine by 1

12 (Rd

2 )−3/2 +O(R−1
d ).

REFERENCES

[1] N. Merhav and M. Feder, “Universal prediction,” Information Theory,
IEEE Transactions on, vol. 44, no. 6, pp. 2124 –2147, Oct. 1998.

[2] ——, “Universal schemes for sequential decision from individual data
sequences,” Information Theory, IEEE Transactions on, vol. 39, no. 4,
pp. 1280 –1291, 1993.

[3] G. C. Goodwin and R. L. Payne, Dynamic System Identification:
Experiment Design and Data Analysis. Mathematics in Science and
Engineering, vol. 136. New York: Academic Press, 1977.

[4] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice
Hall, 1986.

[5] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the
IEEE, vol. 63, no. 4, pp. 561 – 580, 1975.

[6] T. M. Cover, “Hypothesis testing with finite statistics,” The Annals of
Mathematical Statistics, vol. 40, no. 3, pp. 828–835, 1969.

[7] M. Hellman, “Finite-memory algorithms for estimating the mean of a
gaussian distribution (corresp.),” Information Theory, IEEE Transactions
on, vol. 20, no. 3, pp. 382 – 384, May 1974.

[8] D. Rajwan and M. Feder, “Universal finite memory machines for coding
binary sequences,” in Data Compression Conference, 2000. Proceedings.
DCC 2000, 2000.

[9] E. Meron and M. Feder, “Optimal finite state universal coding of indi-
vidual sequences,” in Data Compression Conference, 2004. Proceedings.
DCC 2004, 2004, pp. 332 – 341.

[10] ——, “Finite-memory universal prediction of individual sequences,”
Information Theory, IEEE Transactions on, vol. 50, no. 7, pp. 1506
– 1523, 2004.

[11] A. Ingber and M. Feder, “Non-asymptotic design of finite state universal
predictors for individual sequences,” Data Compression Conference, pp.
3–12, 2006.

[12] ——, “Prediction of individual sequences using universal deterministic
finite state machines,” in Information Theory, 2006 IEEE International
Symposium on, 2006, pp. 421 –425.

[13] A. Ingber, “Universal prediction of individual sequences using determin-
istic finite state machines,” Master’s thesis, Tel-Aviv University, 2006.

[14] A. Tavory and M. Feder, “Finite memory universal portfolios,” in
Information Theory, 2008. ISIT 2008. IEEE International Symposium
on, 2008, pp. 1408 –1412.

[15] D. Rajwan, “Universal finite memory coding of binary sequences,”
Master’s thesis, Tel-Aviv University, 2000.

[16] E. Meron, “Universal finite memory prediction, coding and estimation
of individual sequences,” Master’s thesis, Tel-Aviv University, 2003.


